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Abstract. This paper proposes a novel metaheuristics approach to find the global optimum of
continuous global optimization problems with box constraints. This approach combines the char-
acteristics of modern metaheuristics such as scatter search (SS), genetic algorithms (GAs), and tabu
search (TS) and named as hybrid scatter genetic tabu (HSGT) search. The development of the HSGT
search, parameter settings, experimentation, and efficiency of the HSGT search are discussed. The
HSGT has been tested against a simulated annealing algorithm, a GA under the name GENOCOP,
and a modified version of a hybrid scatter genetic (HSG) search by using 19 well known test func-
tions. Applications to Neural Network training are also examined. From the computational results,
the HSGT search proved to be quite effective in identifying the global optimum solution which makes
the HSGT search a promising approach to solve the general nonlinear optimization problem.
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1. Introduction

In this paper the following problem known as the global optimization problem is
considered: Find a point x* such that f (x*) < f(x)Vx € D, where D is a convex
set more specifically a polytope that is defined by box constraints in R".

The solution methodologies to solve the above problem are classified into two
categories as deterministic and stochastic methods respectively. Floudas and
Pardalos (1992), Horst et al. (1995), Reeves (1993), Rinnooy et al. (1989), and
Torn and Zilinskas (1989) provided excellent surveys of those methods. Some of
these methods have been proposed by Becker and Lago (1970), Branin (1972),
Dixon and Szeg6 (1978a, 1978b), Garcia and Gould (1980), Goldstein and Price
(1971), Price (1978), Shubert (1972), and Torn (1978). Recently, modern meta-
heuristics have been proposed such as simulated annealing (Corana et al., 1987;
Goffe et al., 1994; Kirkpatrick et al., 1983), genetic algorithms (GAs) (Androula-
kis and Venkatasubramanian, 1991; Goldberg, 1989; Holland, 1992), evolutionary
algorithms by Michalewicz (1996a, 1996b), tabu search (TS) (Al-Sultan and Al-
Fawzan, 1997; Battiti and Tecchiolli, 1994, 1996; Cvijovic and Klinowski, 1995;
Glover and Laguna, 1993) and scatter search (SS) (Fleurent et al., 1995; Glover,
1994b, 1995; Trafalis and Al-Harkan, 1995).

Deterministic methods attempt to generate trajectories that eventually converge
to points which satisfy the criteria of local optimality. They are beneficial only
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when the starting point belongs to the region of attraction of the global optimum.
This infers that any deterministic method could be attracted by the local optimum
instead. Stochastic methods attempt to reasonably cover the whole search space,
so that all local and global optima are identified. The main difference between
deterministic and stochastic algorithms is that in the stochastic methods, points
that do not strictly improve the objective function can also be created and take part
in the search process.

The main objective of this paper is to apply tabu search and scatter search in
continuous optimization problems. Specifically, we modify and extend an evol-
utionary approach that was proposed by Androulakis and Venkatasubramanian
(1991) and Trafalis and Al-Harkan (1995 and forthcoming) by introducing notion
of memory that is originated from TS. Our approach, a hybrid scatter genetic tabu
(HSGT) search, can be considered as a hybrid approach which attempts to find
the global optimum of a general nonlinear function. The proposed HSGT search
combines the characteristics of metaheuristics such as scatter search, genetic al-
gorithms, and tabu search. The proposed HSGT search starts with a randomly
generated starting point and search directions to construct a collection of solu-
tions. Then, it computes the weighted center of gravity using these solutions and
the weight assigned to each solution. Next, a new weighted center of gravity is
accepted or rejected according to its tabu status. Subsequently, a new set of search
directions using the old search directions are generated either randomly or using
the GA operators. If the new center of gravity is tabu, then the new directions
are randomly generated. Otherwise, the GA operators are used to construct the
new search directions. At this stage, a complete iteration of the HSGT search is
performed. The procedure is repeated until the stopping criterion is satisfied. Then,
the final weighted center of gravity is the solution to the problem.

The organization of this paper is as follows. In the following section, descrip-
tions of the basic building blocks of the HSGT approach are given. A full de-
scription and implementation of the HSGT search is presented in Sections 3 and
4, respectively. The computational results are given in Section 5. An application
to neural networks training is examined in Section 6. The conclusion and recom-
mendations are given in Section 7. In Appendix A, the 19 test functions which were
used for testing the proposed HSGT search are given.

2. Description of basic building blocks of the HSGT search

Some characteristics of modern metaheuristics such as SS, GA, and TS are com-
bined in order to design the proposed HSGT search for continuous global optimiz-
ation problems. In this section, methods that are the building blocks of the HSGT
search will be reviewed to give a better understanding. The following sections will
be based on the following methods.
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cgin
initialize a population of chromosomes
evaluate each chromosome

while (not termination-condition) do
seiect chromosomes for reproduction
implement GA operators
evaluate new chromosomes
replace the old chromosomes with the new
chromosomes

end

end

Figure 1. The general genetic algorithm.

2.1. GENETIC ALGORITHMS (GA)

This subsection is devoted to describing the GAs which were developed by Holland
in 1975. The theory and the application of the GAs have been reported by several
researchers (Davis, 1991; Goldberg, 1989; Holland, 1992; Michalewicz, 1996a,
1996b; Srinivas and Patnaik, 1994). In these studies, the GAs were shown to be
successfully applied to several optimization problems. For example, they have been
applied to routing, scheduling, adaptive control, game playing, cognitive modeling,
transportation problems, traveling salesman problems, optimal control problems,
and database query optimization among others. Since GAs are adaptive and flex-
ible, they have attracted several researchers from different fields such as computer
science and engineering, operations research, business, and social science.

The GAs are stochastic search techniques whose search algorithms simulate
natural phenomena (biological evolution). One of the strengths of GAs is that they
use past information to direct their search with the assumption of improved per-
formance. The general GA procedure is given in Figure 1 and can be described as
follows: a population of binary or non-binary chromosomes is initialized, then,
each chromosome is evaluated using the fitness function. Next, a set of chro-
mosomes is selected to reproduce new chromosomes. The production process is
accomplished by applying the genetic operators (crossover and mutation) on the
chromosomes selected. Then, each new chromosome is evaluated to complete one
iteration.

2.2. SCATTER SEARCH (SS)

The SS approach was introduced by Glover (1977). Originally it was introduced as
a heuristic to obtain a near optimal solution to an integer programming problem.
Also, it was used to generate both starting solutions and trial solutions. Recently the
SS approach was refined and used for both discrete and continuous optimization
problems (Fleurent et al., 1995; Glover, 1994b, 1995). The SS approach is given in
Figure 2 and it is described as follows.
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begin
while (not termination-condition) do
generate a set of reference points
generate a weighted center of gravity for the reference
points
record the function evaluated
end
end

Figure 2. The general scatter search approach.

The SS generates sequences of coordinated initializations, which are performed
to ensure the exploration of the various parts of the solution space. The SS begins
with a set of reference points which can be obtained by applying either heuristic
procedures or random methods. Then, a weighted center of gravity of the reference
points is determined using a linear combination of the reference points and their
weights. Next, subsets of the initial reference points and the weighted center of
gravity are used to define new sub-regions as a foundation for generating sub-
sequent points. Then, these points are evaluated and are used as the new set of
reference points. This process is repeated until the stopping criteria are satisfied.
More detailed descriptions are given in Glover (1977, 1994b, 1995).

2.3. TABU SEARCH (TS)

The TS approach is a heuristic to solve combinatorial optimization problems. Re-
cently, the TS approach has been applied to solve continuous global optimiza-
tion problems (Battiti and Tecchiolli, 1994, 1996; Cvijovic and Klinowski, 1995;
Glover, 1994a; Glover and Laguna, 1993). The TS approach is given in Figure 3.

The basic idea of the TS approach is to imposing restrictions on the search
process to guide it to investigate difficult regions. The TS approach starts its pro-
cedures with an initial solution. Then, the TS constructs a neighborhood from this
solution to identify adjacent solutions. Next, the objective function associated with
each adjacent solution is determined. Before determining the best move, the TS
approach determines the set of admissible moves first. When the set of admissible
moves has been constructed, a best move can be selected. There are other strategies
which can be used to filter the admissible moves and select the best move. These
strategies are known as diversification and intensification. These strategies are
explained in depth in Glover and Laguna (1993).

3. Description of the hybrid scatter genetic tabu (HSGT) search

The HSGT search combines the features of the above methods. Specifically, we ex-
tend the hybrid scatter genetic search that was proposed by Trafalis and Al-Harkan
(1995) to TS by introducing the notion of memory to explore the solution space
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begin

generate an initial solution for the problem

evaluate the objective function value

while (not termination-condition) do
construct a set of adjacent solutions from the curren
evaluate each solution constructed
construct a set of admissibie solutions from the set of adjacent solutions
select the best solution from the admissible set and set it as the current
solution

end

enda

Figure 3. The general tabu search approach

more extensively. Our approach, a hybrid scatter genetic tabu (HSGT) search, can
be considered as a hybrid approach which attempts to find the global optimum of
a general nonlinear function. The HSGT search is given in Figure 4 and explained
as follows:

The HSGT search begins with an initial solution, X*. This solution can be con-
sidered as the best solution X, for Step 1. Then, at Step 2, reference points X’;
are generated by using random search directions d; and a step size w; to construct
a collection of feasible solutions. The number of reference points, m, needed to at-
tempt to cover the whole solution space, is expressed in terms of the dimensionality
of the problem as m = Cn, where n is the dimension of the problem and C is an
integer constant. After generation of reference points, function evaluations f (X’;)
are performed for each of the reference points X’Jf at Step 3. In Step 4, a weight
W; is assigned to each point generated according to its function value f(X’;). This
weight depends on how good that particular point is. For the minimization prob-
lems, the largest weight is given to the point with the smallest objective function
value. In Step 5, a new solution X**1 is determined as a weighted center of gravity
of the reference points X j‘ generated with corresponding weights W;. The weighted
center of gravity is computed as a convex combination of all reference points so
that the new solution becomes feasible. The HSGT search includes the features of
the SS approach by using the concepts of trajectory and clustering methods com-
bined. The identifications of the consecutive weighted centers of gravity emulate
the trajectory method. The groups of similar reference points, which form new
reference points that will be explained later in this section, behave similarly like in
clustering methods. One can see that, up to this step, the HSGT search is similar to
SS approach.

After this step some characteristics of TS and GAs are embedded to the HSGT
search to test the status of the new solution X**+* and to update the search directions
D;, respectively. The characteristics of the TS are included in the HSGT search by
testing the tabu status of every new center of gravity generated and by implement-
ing the classical aspiration criterion. For each new center of gravity or the new
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Step 1: Generate an initial solution, X* and set Xpest = Xx*

Step 2: Generate reference points, X,-k =x+ K D;, where j=1, ..., m, yjis a
step length, and D; is a normalized random search direction, d.

Step 3: Evaluate the objective function f(Xjk) for each of the reference points
Xj"

Step 4: Assign a weight W; to each of the reference points according to ﬂXjk).

Step 5: Compute a new solution, X*asa weighted center of gravity by using
convex combination of reference points X;* and weights W;.

Step 6: If AIX**') < f{Xpes:) then go to Step 8.

Step 7: Check tabu status of X**'. If X**/ satisfies the tabu conditions then do
not accept X**! as a solution, go to Step 2 and generate new reference
points Xjk by generating new random search directions d;.

Step 8: Xoes: = X**', update search directions Djk+1 using GA operators.

Step 9: If maximum number of iterations are satisfied, HSGT search stops with
the best solution as Xpest

Step 10: Go to Step 2 and use D,-‘k” to generate new reference points.

Figure4. The HSGT Search.

solution X*+1, the tabu status is defined by how close it is to the previous solution,
by how much it changes the objective function, and by how much it destroys or
improves the objective function. The aspiration criterion used in the HSGT search
is activated, when a move that was tabu is attempted and results in a solution that
is better than any solution so far.

The HSGT search also combines the characteristics of the GAs through cros-
sover and mutation of the existing search directions. In the HSGT search, the
population size is the number of the search directions and the directions are the
chromosomes in our population. The binary tournament is used to select directions
from the old directions to produce new directions that will be in the new generation.
The binary tournament is performed by first selecting randomly two directions
from the population. Then, the GA operators are applied to these two directions.
Next, the best of the two produced directions will be selected and allowed to enter
the pool of the potential directions for the next generation. These procedures will be
repeated until a new generation of chromosomes or directions is produced. Once
we produce a new generation of chromosomes or directions, we go to Step 2 to
generate new reference points by using them. This whole process is repeated until
the desired number of iterations are satisfied. When we reached to this desired
number of iterations, the HSGT search (Figure 4) stops with X, as the solution
of the problem.
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4. Implementation of the hybrid scatter genetic tabu (HSGT) search

In this section, some implementation issues of the HSGT search are discussed. It
is possible to offer alternative approaches to the implementation of the HSGT.

4.1. GENERATION OF AN INITIAL SOLUTION, Xf

The initial solution, X*, is randomly generated by using the uniform distribution
between the upper and the lower bounds of each variable to satisfy feasibility.

4.,2. GENERATION OF REFERENCE POINTS, X’;

These reference points are generated as follows. First, a set of m search directions
d; is randomly generated according to the normal distribution with zero mean
and unit variance. The generated directions are normalized. A step size w in each
direction is required to be computed to generate this set of m reference points. The
step size, u, is computed using two methods which are selected randomly. We use
these two methods together in order to make the implementation more robust. The
first method is the line search technique that was proposed by Press et al. (1992).
The second method is a fixed step size technique. In this method, the step length,
u, is computed as follows: u = min{«, 8}, where:

Xy -x X%, is the upper bound for the i*" component of X ;.
a =min ifd >0 7 h
X7+ is the lower bound for the it component of X .

siis the i™ component of the direction investigated.

[ xt-xt X' is the i component of the projection point.
B=min] L .ifgl <0 _
d! Where Xy, X1,d,and X are in R"

Then, the value of p is adjusted according to the number of iterations that have
been performed so far as follows:

0.75u, if iteration number < 0.7* maximum iteration
m= 0.25u, if iteration number > 0.7* maximum iteration

The above adjustment, means that the HSGT search will have bigger steps at the
beginning of the search and then it will have smaller steps when near to the end of
the search.

It should be noted that, if the current solution point, X, is on the boundary of the
solution space then the search direction d; is likely to bring a step size equal to zero
depending on the sign of ;. In this case probability of trapping on the boundary or
local solution is very high. To reduce this probability, m search directions are used
but that does not guarantee the global solution all the time.
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4.3. ASSIGNING A WEIGHT W;

Assign a weight, W;, to each of the reference points, X ; according to its value
f(X;) as follows:

W, = Cj/ZCi where C; = 1/f (X )V,
i=1
and

i Wj > 0.
Jj=1

If £(X;) =0, the point X; will be given a very large C;. If there is a mixture
of positive and negative function values, f(X;) then the function values needs
to be shifted to positive values. This procedure can be accomplished by defining
S =min(f(X;)),j=1,...,m.Then, update the f(X;) as follows:

fX)=FfXN+ISI+1,j=1... ,m

It should be noted that, for the best reference point that has the best objective value,
the highest weight value is assigned.

4.4, TS ELEMENTS

This subsection describes the elements of the TS that are used in the HSGT search.
A move is tested to check whether it is tabu or not. In the HSGT search, there are
the following three criteria which are used to determine if a move is tabu.

(1) 1X* — X**1||, which is the total distance moved.

(2) | £(X*) — f£(X*1)|, which is the total change in the objective function.

(3) % x 100, which is the percentage improvement or destruction that
will be accrued if the new move is accepted.

Thus, a move is considered tabu if it is both closely located to the previous point
and the change in its objective function is very small. Hence, if a move satisfied the
tabu conditions then the previous center of gravity is reserved and a new set of m
directions is generated. In Step 7, a check is made to see if the aspiration criterion
is satisfied. The aspiration criterion used in the HSGT search is activated, when
a move that was tabu is attempted and results in a solution that is better than any
visited solution so far. The tabu list size is chosen to be dynamic and it was gener-
ated randomly according to the uniform distribution between two integer numbers.
In our implementation the tabu list size is chosen from the uniform distribution
between a = 6 and b = 13.
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4.5. GA OPERATORS

The GA operators implemented in the HSGT search are the whole arithmetical
crossover and the general mutation. The whole arithmetical crossover is imple-
mented by performing a convex combination of two search directions as follows:

Dt = vDhk + (1 —v)Df and D™ = vD¥ + (1 —v)D%, where 0 < v <

D% & Dj are the two old search directions that are randomly selected.

In Step 8, when the two new search direction are formed, one of them will be
selected according to how good that particular direction is. Specifically, using Xy,
D, and D5, a move can be made in each direction to two new points (where
Xk is the current center of gravity). Then, the objective function for each point
is computed. Next, the direction that gives the smallest f(X*) for those two new
points is selected as a new direction and put in the pool of the potential direc-
tions for the next generation. The general mutation is to alter randomly one of the
coordinates of the search directions. The general mutation is performed by first
selecting a direction randomly. Then, a coordinate of the above search direction is
selected. Next, the value of this coordinate is replaced with a random value that is
generated according to the normal distribution with zero mean and unit variance.

Itis clear that the HSGT search is stochastic in nature which makes the theoret-
ical analysis considerably difficult. Hence, the convergence of the HSGT search can
not be proven analytically. However, the behavior of the developed HSGT search
will be determined computationally through a series of experiments which will be
discussed in the following section.

5. Computational results

As mentioned earlier, the behavior of the HSGT search is determined by an extens-
ive computational experimentation by using 19 well-known global optimization
test problems listed in Table 1. The mathematical representations of these prob-
lems are presented in the Appendix A. These problems are well-established test
problems in the literature and commonly used by other researchers to test their
search algorithms (Al-Sultan and Al-Fawzan, 1997; Battiti and Tecchiolli, 1996;
Cvijovic and Klinowski, 1995; Dixon and Szeg6, 1978a, 1978b; Duan et al., 1993).
Problems numbered between 6 and 19 are introduced by Koon and Sebald (1995)
for testing the global convergence of evolutionary programming strategies. Most of
these test problems have low dimensionality (2—4) but with several local and global
optima and large flat regions enclosing the global optima. These characteristics
make the selected test functions difficult to find their global optima.

To determine the behavior and global convergence of the HSGT a series of
experiments was performed. In order to conduct performance analysis of the HSGT
approach, three more global optimization methods were tested and compared on
these problems. The global optimization methods used for performance analysis
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Table 1. Test problems used for performance analysis

T.B. TRAFALIS AND S. KASAP

Problem  Name Dimension  Number of optima
Number Local Global
1 Goldstein and Price’s function 2 4 1
2 Himmelblau’s function 2 4 4
3 Rosenbrock’s function 4 1 1
4 Shekel’s family 4 5 1
5 Shekel’s family 2 10 1
6 Powell’s function 4 1 1
7 6-Hump CamelBack function 2 6 2
8 Shubert function 2 >760 >18
9 General test function 2 4 1
10 General test function 3 8 1
11 General test function 4 16 1
12 General test function 2 Several 1
13 General test function 2 >3 2
14 General test function 2 >3 2
15 General test function 2 >3 2
16 General test function 2 >3 2
17 Rastrigin function 2 50 1
18 Branin function 2 >3 >3
19 General test function 1 38 7

Table 2. Global optimization methods used for performance analysis

Method Name Reference

HSGT Hybrid scatter genetic tabu search  Trafalis and Kasap, 2001 (this paper)
HSG Hybrid scatter genetic search Trafalis and Al-Harkan, 1995

SA Simulated annealing Goffe et al., 1994

GENOCOP  Genetic algorithm for numerical Michalewicz and Janikow, 1996b

optimization with constraints

are shown in Table 2. As mentioned earlier HSG is the predecessor of the HSGT.
In addition, a simulated annealing and a GA approach are also tested. The HSGT,
HSG and SA are coded in FORTRAN. GENOCOP (version 3.0) code written in

C++ is downloaded from the author’s website

http://www.coe.uncc.edu/ zbyszek/evol-systems.html.
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For the methods that are proposed by us, the following parameters were used
for all problems: The parameter C that determines the number of reference points
at Step 2 is set to 8. It is expected that, less reference points will increase the speed
but decrease the success for finding global optima. The parameter v that is used
for crossover operator at Step 8 is randomly generated at each iteration. The new
solution at Step 7 is assumed tabu if the total distance moved at the current iteration
is less than 0.1 and the total change in the objective function is less than 0.005 or
the percentage of destruction at the objective function is higher than a percentage
that is generated randomly between 50 and 75%. The tabu list size is generated
randomly between 6 and 13 at each iteration. After setting these parameters, each
global optimization method was tested by running 100 trials on each test function.
All tests have been executed without any individual tuning of these parameters.
Each trial began with an independent randomly generated initial solution. Then,
the number of global optima found out of 100 trials is reported as the success
rate of the method for each problem. These results are presented in Table 3. The
common stopping criteria is the maximum number of iterations that is set to 100
for the methods were proposed by us.

From Table 3, it can be seen that the HSGT search performed significantly better
than other methods (with the exception of GENOCOP) and reached the global
optimum solution in all hundred runs for 15 test problems. The success rate of the
GENOCOP was better for six problems and was worse than our approach for two
problems. For other problems both techniques performed in a similar way.

More detailed experiments to investigate the quality of the solution obtained
by the HSGT search were conducted. The quality of solutions is determined by
the percentage deviation and distance from the global optimum, and CPU time.
For these experiments, the first 3 methods namely HSGT, HSG, and SA are tested
and compared on these problems. The results of these experiments are shown in
Table 4.

From Table 4, for the 15 functions that the HSGT search reached the global
optimum, the percentage deviation is zero except for problem 17. For the prob-
lems that the HSGT search was not able to find the global optimum 100% such
as problem numbers 4, 5, 8, 10, 11, and 13, the HSGT converged to the global
optimum more often than the other two approaches with average percentage of
deviations of 58.79, 78.36, 0.3, 1.06, 4.6, and 30%, respectively. This implies that
the HSGT approach converged to the global optimum more often than the other
two approaches for 19 test functions. For functions 4, 5, 8, and 13, the SA achieved
a better average in terms of the average percentage of deviations. The HSGT and
the SA obtained the same average percentage deviation for function 19 while the
HSGT and the HSG obtained the same average percentage deviations for functions
3, 14, and 15 respectively. In terms of the CPU time and the average number of
iterations the HSG was the best performer. The average CPU time needed by the
HSGT, HSG, and SA ranged between 1.3 and 19.55 s, 0.35 and 8.61 s, and 3.58
and 27.43 s respectively. Also, it can be seen that the HSG and SA approaches were
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Table 3. The success rate for each test problem and
method

Problem HSGT HSG SA GENOCOP

1 100 100 100 100
2 100 100 100 100
3 100 100 100 100
4 3 0 1 24
5 1 0 0 56
6 100 100 29 58
7 100 100 100 100
8 61 5 58 100
9 100 52 74 100
10 76 19 7 100
11 36 4 0 74
12 100 100 100 100
13 70 99 100 100
14 100 100 100 100
15 100 100 20 100
16 100 98 5 100
17 100 45 100 93
18 100 100 100 100
19 100 84 100 100

effected by the problem size as shown by their results for functions 4, 5, 6, 10, and
11. However, the HSGT approach was more robust and it obtained better results
for these functions.

Another detailed experimentation is conducted to understand the effect of em-
bedding the notion of memory that is originated from TS. In this experimentation,
objective function value at each iteration is recorded for the 100 trials for some
test problems. Then, the average objective function value for the 100 trials for each
iteration is plotted. Corresponding plots are shown in Figs. 5-10.

From these figures, we can see the improvement coming from embedding the
TS approach in the HSG approach. In fact, the HSGT search finds the solution in
less iterations than HSG for the tested six problems. Note that, these figures also
prove the success of the HSGT over HSG. Note that Figs. 6 and 10 imply that,
either of the search methods has a difficulty for finding global optimum. On the
other hand, Table 3 shows that we had 61 and 100% success with the HSGT on
these problems respectively. This contradiction is caused by the sinusoidal nature
of the problems and the averaged objective values at each iteration to plot the
results. On the other hand, this improvement over HSG increased CPU times of
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Table 4. CPU time, distance and percentage deviation from global optimum

Problem  CPU time Distance Percentage deviation
(s) from global optimum from global optimum
HSGT HSG SA HSGT HSG SA HSGT HSG SA
1 239 130 589 0.0001 0.0006 0.0135  0.00 0.02 045
2 1.90 1.01 453 0.0000 0.0005 0.0030 0.00 0.05 0.30
3 1.30 047 3.92 0.0000 0.0000 0.0006  0.00 0.00 0.06
4 566 513 1488 59691  7.1388 49984 5879 70.31 49.23
5 910 861 2743 82567 83029 50693 7836 78.80 48.11
6 341 241 483 0.0001 0.0006 02167 0.01 0.06 21.67
7 372 118 542 0.0000 0.0023 0.0011  0.00 023 0.10
8 445 117 533 05617 67.1338 0.1226 030 3595 0.07
9 159 111 494 0.0017 3.3019 0.0840 0.00 422 011
10 227 207 6.14 1.2474 114841 46599  1.06 9.77 397
11 348 331 753 7.2232 223759 229010 4.61 1428 14.62
12 162 0.88 391 0.0000 0.0001  0.0003 0.00 0.01  0.03
13 567 144 7.09 01222 0.0043 0.0016 30.00 1.05 0.40
14 191 144 6.86 0.0000 0.0009 0.0109  0.00 0.00 0.06
15 226 1.38 6.96 0.0000 0.0030  0.4081  0.00 0.00 0.8
16 157 125 7.07 0.0000 485762 1.8642  0.00 2.00 0.08
17 240 101 410 0.0475 0.2346 0.0480 237 11.73 240
18 434 097 451 0.0000 0.0014 0.0012 0.00 035 031
19 1137 0.35 358 0.0002 0.0932  0.0000 0.00 276  0.00

HSGT. At the development stage of the HSGT search, we were expecting this
result since we are increasing the number of the tested solutions for one trial by
rejecting some solutions.

6. Applicationsto neural network training

The supervised neural network training can be considered as a nonlinear program-
ming problem (Haykin, 1994). Specifically, we minimize a nonlinear error function
between the calculated output and the given desired output with respect to para-
meter weights. To illustrate this, the XOR-2 problem will be used. In the XOR-2
problem, the desired output will be 0 if both of the inputs are the same otherwise
1. The error function for XOR-2 problem will be as follows.

4
Minimize f(x) = Z(yi — '[arge'[i)2
i=1
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Figure 11. The neural network for XOR-2 problem.

. Results of training for neural networks.

Problem Dimension HGST HGS

XOR-2 9 96 23
XOR-3 16 69 14
XOR-4 25 46 9

The neural network architecture for the XOR-2 problem is shown in Figure 11. The
output of this neural network can be calculated as follows:

y = f(bs + z1u11 + zouz) wWhere f(x) = (1 +e¢ %)t

Note that, the activation function f(x) is a nonlinear function. Therefore, the error
function will have more than one local minimum. It is desirable to find the global
optimum for this problem. To find the global optimum to this problem the HSGT
search is used. The results of the training of neural network for the XOR-2, XOR-3,
and XOR-4 problems are given in Table 5.

7. Conclusion and recommendations

A novel metaheursitics approach to find global optimum of continuous optim-
ization problems with box constraints is proposed. This approach combines the
characteristics of modern metaheuristics such as scatter search (SS), genetic al-
gorithms (GAs), and tabu search (TS) and named as hybrid scatter genetic tabu
(HSGT) search. The development of the HSGT search, parameter settings, experi-
mentation, and efficiency of the HSGT search are discussed. The HSGT has been
tested against a simulated annealing algorithm, a GA under the name GENOCOP,
and a modified version of a hybrid scatter genetic (HSG) search by using 19 well
known test functions. Applications to Neural Network training are also examined.
From the computational results, the HSGT search proved to be quite effective in
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identifying the global optimum solution which makes the HSGT search a prom-
ising approach to solve the general nonlinear optimization problem. Applications
to Neural Networks training are also examined. Interior point method versions of
the HGST and HGS are also studied (Trafalis and Kasap, 1996, 1998).

The HSGT search does not require any gradient or Hessian matrix calcula-
tions. Therefore, it does not suffer from ill-conditioning. This HSGT search is a
promising approach to solve the general nonlinear global optimization problem.
Therefore, it can be extended to solve general nonlinear constrained optimization
problems with convex feasible region using one of the transformation methods
(penalty or barrier function approach), and solve nonlinear mixed integer program-
ming problems.
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Appendix A

In this appendix, the 19 test problems are given. To learn more about these func-
tions, refer to Goldstein and Price (1971), Dixon and Szeg6 (1978a, 1978b), Reklaitis
et al. (1983), Smith et al. (1991), and Koon and Sebald (1995).

Function 1 (2-D): Goldstein and Price’s function: X; € [£2, +2]Vi. There are
four local minima and the global objective function value is 3.

@) =14 (x1 4 x2 + D*(19 — 14x; + 3x] — 14x; + 6x1x2 + 3x3)]

[30 + (2x; — 3x2)?(18 — 32x; + 12x% + 48x, — 36x1x2 + 27x3)]

Function 2 (2-D): Himmelblau’s function: X; € [£6, +6]Vi. There are four global
minima with an objective function value of 0. f(x) = (x2+x2—11)2+(x1+x5—7)?
Function 3 (2-D): Rosenbrock’s function: X; e [42, £2]Vi. There is a unique
global minimum with an objective function value of 0. f(x) = 100(x, — xf)2 +
(1 — x1)?

Functions 4 and 5 (4-D): Shekel’s family: X; e [0, 10]Vi. Function 4 has 5 local
minima and function 5 has 10 local minima. The global objective function value
for functions 4 and 5 are —10.1531957 and —10.5362836 respectively.

m

f) == —a) (x —a) + el ™ = (1, ..., x),
i=1
a; = (-xila 7xin)TaCi > O,m = 5OI’ 10

The values for a; and ¢; are given in the following table.
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i a; Ci i a; ¢

1 4 4 4 4 01 6 2 9 2 9 0.6
2 1 1 1 1 02 7 5 5 3 3 0.3
3 8 8 8 8 02 8§ 8 1 8 1 0.7
4 6 6 6 6 04 9 6 2 6 2 0.5
5 3 7 3 7 04 10 7 36 7 36 05

Function 6 (4-D): Powell’s function: X; € [£3, £3]Vi. This function has a unique
global with an objective function value of 0.

Function 7 (2-D): Six-Hump CamelBack function: X; e [+5, +5]Vi. This func-
tion has six local minima and two global minima with an objective function value
of —1.031628.

Function 8 (2-D): Shubert function: X; € [£20, £20]Vi. This function has more
than 760 local minima and more than 18 global minima with an objective function
value of —186.7309.

5 5
fx) = {Zi cos[(i + 1)x1 + i]} {Zi cos[(i + 1)xp + i]
i=1 i=1

Functions 9, 10, and 11 (N-D): General test function: X; € [+20, £20]Vi. This
function has 2" local minima and one global minimum. The global objective func-
tion values are —78.332331, —117.4984, and —156.66466 for N equal 2, 3, and 4
respectively.

N
fx) = %Z(x;‘ — 16x% 4 5x;), N = 2,3, or4.

j=1
Function 12 (2-D): General test function: X; € [45, £5]Vi. This function has
several local minima with an objective function value of 0. f(x) = O.5xf +0.5[1—
€oS(2x1)] + x2
Functions 13, 14, 15, and 16 (2-D). General test function: X; € [£5, £5]Vi for
functions 15 and 16, and X; € [£20, £20]V: for functions 17 and 18. These func-
tions have more than three local minima and two global minima. The global object-
ive function value for functions 15, 16, 17, and 18 are —0.407461, —18.058697,
—227.765747, and —2429.414749 respectively.

F) =10"x% + x2 — (62 +x5)% + 10" (xF + xD)*, n = —m.

Function 17 (2-D): Rastrigin function: X; € [£5, £5]Vi. This function has 50
local minima and one global minimum with an objective function value of —2.

f(x) = x2 + x5 — cos(18x1) — cos(18x,)

Function 18 (2-D): Branin function: X; € [+20, £20]Vi. This function has more
than 3 local and global minima with an objective function value of 0.397887.

fx) = (x2 — 5.1x2 /4mw? + 5x1 /7 — 6)? +10(1 — 1/(87)) cos x; + 10
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Function 19 (1-D): General test function: X e [£20, 4-20]. This function has 38
local minima and 7 global minima with an objective function value of —3.372897.

5
f) =—=1>sin[( + Dx +i]

i=1
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